

 Navigation

 	
 index

 	
 next |

 	Vaurien 0.4 documentation

Welcome to Vaurien’s documentation!

Vaurien, the Chaos TCP Proxy

Ever heard of the Chaos Monkey [http://www.codinghorror.com/blog/2011/04/working-with-the-chaos-monkey.html]?

It’s a project at Netflix to enhance the infrastructure tolerance. The Chaos Monkey
will randomly shut down some servers or block some network connections, and the system
is supposed to survive to these events. It’s a way to verify the high availability
and tolerance of the system.

Besides a redundant infrastructure, if you think about reliability at the level
of your web applications there are many questions that often remain unanswered:

	What happens if the MYSQL server is restarted? Are your connectors able
to survive this event and continue to work properly afterwards?

	Is your web application still working in degraded mode when Membase is
down?

	Are you sending back the right 503s when postgresql times out ?

Of course you can – and should – try out all these scenarios on stage while
your application is getting a realistic load.

But testing these scenarios while you are building your code is also a good
practice, and having automated functional tests for this is preferable.

That’s where Vaurien is useful.

Vaurien is basically a Chaos Monkey for your TCP connections. Vaurien
acts as a proxy between your application and any backend.

You can use it in your functional tests or even on a real deployment
through the command-line.

Installing Vaurien

You can install Vaurien directly from PyPI. The best way to do so is via
pip:

$ pip install vaurien

Design

Vaurien is a TCP proxy that simply reads data sent to it and pass it to a
backend, and vice-versa.

It has built-in protocols: Tcp, Http, Redis & Memcache. The Tcp protocol
is the default one and just sucks data on both sides and pass it along.

Having higher-level protocols is mandatory in some cases, when Vaurien needs to
read a specific amount of data in the sockets, or when you need to be aware
of the kind of response you’re waiting for, and so on.

Vaurien also has behaviors. A behavior is a class that’s going to be
invoked everytime Vaurien proxies a request. That’s how you can impact the
behavior of the proxy. For instance, adding a delay or degrading the response
can be implemented in a behavior.

Both protocols and behaviors are plugins, allowing you to extend Vaurien
by adding new ones.

Last, but not least, Vaurien provides a couple of APIs you can use to
change the behavior of the proxy live. That’s handy when you are doing
functional tests against your server: you can for instance start to add
big delays and see how your web application reacts.

Using Vaurien from the command-line

Vaurien is a command-line tool.

Let’s say you want to add a delay for 20% of the HTTP requests made on
google.com:

$ vaurien --protocol http --proxy localhost:8000 --backend google.com:80 \
 --behavior 20:delay

With this set up, Vaurien will stream all the traffic to google.com by using
the http protocol, and will add delays 20% of the time.

You can find a description of all built-in protocols here: Protocols.

You can pass options to the behavior using –behavior-NAME-OPTION options:

$ vaurien --protocol http --proxy localhost:8000 --backend google.com:80 \
 --behavior 20:delay \
 --behavior-delay-sleep 2

Passing all options through the command-line can be tedious, so you can
also create an ini file for this:

[vaurien]
backend = google.com:80
proxy = localhost:8000
protocol = http
behavior = 20:delay

[behavior:delay]
sleep = 2

You can find a description of all built-in behaviors here: Behaviors.

You can also find some usage examples here: Examples.

Controlling Vaurien live

Vaurien provides an HTTP server with a few APIs, which can be used to control
the proxy and change its behavior on the fly.

To activate it, use the –http option:

$ vaurien --http

By default the server runs on locahost:8080 but you can change it with
the –http-host and –http-port options.

See APIs for a full list of APIs.

Controlling Vaurien from your code

If you want to run and drive a Vaurien proxy from your code, the project
provides a few helpers for this.

For example, if you want to write a test that uses a Vaurien proxy,
you can write:

import unittest
from vaurien import Client, start_proxy, stop_proxy

class MyTest(unittest.TestCase):

 def setUp(self):
 self.proxy_pid = start_proxy(port=8080)

 def tearDown(self):
 stop_proxy(self.proxy_pid)

 def test_one(self):
 client = Client()
 options = {'inject': True}

 with client.with_behavior('error', **options):
 # do something...
 pass

 # we're back to normal here

In this test, the proxy is started and stopped before and after the
test, and the Client class will let you drive its behavior.

Within the with block, the proxy will error out any call by using
the errors behavior, so you can verify that your application is
behaving as expected when it happens.

Extending Vaurien

Vaurien comes with a handful of useful Behaviors and Protocols,
but you can create your own ones and plug them in a configuration file.

In fact that’s the best way to create realistic issues. Imagine that you
have a very specific type of error on your LDAP server everytime your
infrastructure is under heavy load. You can reproduce this issue in your
behavior and make sure your web application behaves as it should.

Creating new behaviors and protocols is done by implementing classes with
specific signatures.

For example if you want to create a super behavior, you just have
to write a class with two special methods: on_before_handle and
on_after_handle.

Once the class is ready, you can register it with Behavior.register:

from vaurien.behaviors import Behavior

class MySuperBehavior(object):

 name = 'super'
 options = {}

 def on_before_handle(self, protocol, source, dest, to_backend):
 # do something here
 return True

 def on_after_handle(self, protocol, source, dest, to_backend):
 # do something else
 return True

Behavior.register(MySuperBehavior)

You will find a full tutorial in Extending Vaurien.

Contribute

The code repository & bug tracker are located at
https://github.com/mozilla-services/vaurien

Don’t hesitate to send us pull requests or open issues!

More documentation

Contents:

	APIs

	Command line

	Behaviors
	blackout

	delay

	dummy

	error

	hang

	Protocols
	http

	memcache

	redis

	tcp

	Extending Vaurien
	Writing Protocols

	Writing Handlers

	The BaseHandler class

	Full handler example

	Using handlers

	Keep-alive vs Disconnect

	Examples

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	0.4

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vaurien 0.4 documentation

APIs

GET /behavior

Returns the current behavior in use.

Example:

$ curl -XGET http://localhost:8080/behavior
{
 "behavior": "dummy"
}

POST /behavior

Set the behavior. The behavior must be provided in a JSON mapping
in the body of the request, with a name key for the behavior
name, and any option to pass to the behavior class.

Example:

$ curl -d '{"sleep": 2, "name": "delay"}' http://localhost:8080/behavior \
 -H "Content-Type: application/json"
 {
 "status": "ok"
 }

GET /behaviors

Returns a list of behaviors that are possible to use

Example:

$ curl -XGET http://localhost:8080/behaviors
{
"behaviors": [
 "blackout",
 "delay",
 "dummy",
 "error",
 "hang"
]
}

Command line

You can use these APIs directly from the command-line using the vaurienctl
CLI tool.

vaurienctl can be used to list the available behaviors, get the current one,
or set it.

Here is a quick demo:

$ vaurienctl list-behaviors
delay, error, hang, blackout, dummy

$ vaurienctl set-behavior blackout
Behavior changed to "blackout"

$ vaurienctl get-behavior
blackout

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	0.4

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vaurien 0.4 documentation

Behaviors

Vaurien provides a collections of behaviors.

blackout

Reads the packets that have been sent then hangs.

Acts like a pdb.set_trace() you’d forgot in your code ;)

delay

Adds a delay before or after the backend is called.

The delay can happen after or before the backend is called.

Options:

	before: If True adds before the backend is called. Otherwise after (bool, default: True)

	sleep: Delay in seconds (int, default: 1)

dummy

Transparent behavior. Nothing’s done.

error

Reads the packets that have been sent then send back “errors”.

Used in cunjunction with the HTTP Procotol, it will randomly send back
a 501, 502 or 503.

For other protocols, it returns random data.

The inject option can be used to inject data within valid data received
from the backend. The Warmup option can be used to deactivate the random
data injection for a number of calls. This is useful if you need the
communication to settle in some speficic protocols before the ramdom
data is injected.

The inject option is deactivated when the http protocol is used.

Options:

	inject: Inject errors inside valid data (bool, default: False)

	warmup: Number of calls before erroring out (int, default: 0)

hang

Reads the packets that have been sent then hangs.

Acts like a pdb.set_trace() you’d forgot in your code ;)

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	0.4

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vaurien 0.4 documentation

Protocols

Vaurien provides a collections of protocols.

http

HTTP protocol.

Options:

	buffer: Buffer size (int, default: 2048)

	keep_alive: Keep the connection alive (bool, default: False)

	reuse_socket: If True, the socket is reused. (bool, default: False)

memcache

Memcache protocol.

Options:

	buffer: Buffer size (int, default: 2048)

	keep_alive: Keep the connection alive (bool, default: False)

	reuse_socket: If True, the socket is reused. (bool, default: False)

redis

Redis protocol.

Options:

	buffer: Buffer size (int, default: 2048)

	keep_alive: Keep the connection alive (bool, default: False)

	reuse_socket: If True, the socket is reused. (bool, default: False)

tcp

TCP handler.

Options:

	buffer: Buffer size (int, default: 2048)

	keep_alive: Keep the connection alive (bool, default: False)

	reuse_socket: If True, the socket is reused. (bool, default: False)

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	0.4

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vaurien 0.4 documentation

Extending Vaurien

Note

Before reading this section, make sure you read Keep-alive vs Disconnect

You can extend Vaurien by writing new protocols or new behaviors.

Writing Protocols

XXX

Writing Handlers

Creating new handlers is done by implementing a class with a specific
signature:

from vaurien.handlers import Handler

class MySuperHandler(object):

 name = 'super'
 options = {}

 def __call__(self, client_sock, backend_sock, to_backend):
 # do something here
 return True

Handler.register(MySuperHandler)

Vaurien can use this handler and call it everytime data is being seen on one hand
or the other.

You must call Handler.register against your class is order to add it
to the list of the available plugins.

Let’s see the different attributes and options we have in this class:

	name - the name under which your backend is known

	options - a mapping containing your handler options

	client_sock - the socket opened with the client

	backend_sock - the socket opened with the backend server

	to_backend - a boolean giving the direction of the call. If True
it means some data is available in the client socket, that is supposed
to go to the backend. If False, it means data is available on the backend
socket and should be tramsmitted back to the client.

For the handler options, each option is defined in the options mapping.
The key is the option name and the value is a 3-tuple providing:

	a description

	a type

	a default value

every option is optional and need a default value

Everytime a handler is used, it gets two extra attributes:

	settings - the settings loaded for the handler

	proxy - the proxy instance

The BaseHandler class

XXX

Full handler example

Here is how the delay handler is specified:

from vaurien.handlers.base import BaseHandler

class Dummy(BaseHandler):
 """Dummy handler.

 Every incoming data is passed to the backend with no alteration,
 and vice-versa.
 """
 name = 'dummy'
 options = {'keep_alive': ("Keep-alive protocol",
 bool, False),
 'reuse_socket': ("If True, the socket is reused.",
 bool, False)}

 def __call__(self, client_sock, backend_sock, to_backend):
 data = self._get_data(client_sock, backend_sock, to_backend)
 if data:
 dest = to_backend and backend_sock or client_sock
 source = to_backend and client_sock or backend_sock
 dest.sendall(data)

 # If we are not keeping the connection alive
 # we can suck the answer back and close the socket
 if not self.option('keep_alive'):
 data = ''
 while True:
 data = dest.recv(1024)

 if data == '':
 break
 source.sendall(data)
 dest.close()
 dest._closed = True
 elif not to_backend:
 # We want to close the socket if the backend sock is empty
 if not self.option('reuse_socket'):
 backend_sock.close()
 backend_sock._closed = True

 return data != ''

Using handlers

Once the handler is ready, you can point it to Vaurien
by providing its fully qualified name - e.g. the class name prefixed
by the module and package(s) names.

Then you can use it with the –behavior option:

$ vaurien --proxy localhost:8000 --backend google.com:80 \
 --behavior 20:path.to.the.callable \
 --handler-delay-sleep 2

Or by using a configuration file:

[vaurien]
behavior = 20:foobar

[handler:foobar]
callable = path.to.the.callable
foo=bar

And calling Vaurien with –config:

$ vaurien --config config.ini

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	0.4

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vaurien 0.4 documentation

Keep-alive vs Disconnect

Explain here the different strategies

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	0.4

 	0.1

 Navigation

 	
 index

 	
 previous |

 	Vaurien 0.4 documentation

Examples

Proxying on an HTTP backend and sending back 50x errors 20% of the time:

$ vaurien --proxy 0.0.0.0:8888 --backend blog.ziade.org:80 --behavior 20:error --handler-error-protocol http

Adding a 1 second delay on every call to a MySQL server:

$ vaurien --proxy 0.0.0.0:3307 --backend 0.0.0.0:3306 --stay-connected --behavior 100:delay \
 --handler-delay-sleep 1

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	0.4

 	0.1

 Navigation

 	
 index

 	Vaurien 0.4 documentation

Index

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	0.4

 	0.1

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Vaurien 0.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Mozilla.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

 		0.4

 		0.1

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

