

Vaurien, the Chaos TCP Proxy

Ever heard of the Chaos Monkey [http://www.codinghorror.com/blog/2011/04/working-with-the-chaos-monkey.html]?

[image: _images/monkey.png]
It’s a project at Netflix to enhance the infrastructure tolerance. The Chaos Monkey
will randomly shut down some servers or block some network connections, and the system
is supposed to survive to these events. It’s a way to verify the high availability
and tolerance of the system.

Besides a redundant infrastructure, if you think about reliability at the level
of your web applications there are many questions that often remain unanswered:

	What happens if the MYSQL server is restarted? Are your connectors able
to survive this event and continue to work properly afterwards?

	Is your web application still working in degraded mode when Membase is
down?

	Are you sending back the right 503s when postgresql times out ?

Of course you can – and should – try out all these scenarios on stage while
your application is getting a realistic load.

But testing these scenarios while you are building your code is also a good
practice, and having automated functional tests for this is preferable.

That’s where Vaurien is useful.

Vaurien is basically a Chaos Monkey for your TCP connections. Vaurien
acts as a proxy between your application and any backend.

You can use it in your functional tests or even on a real deployment
through the command-line.

Installing Vaurien

You can install Vaurien directly from PyPI. The best way to do so is via
pip:

$ pip install vaurien

Design

Vaurien is a TCP proxy that simply reads data sent to it and pass it to a
backend, and vice-versa.

It has built-in protocols: TCP, HTTP, Redis & Memcache. The TCP protocol
is the default one and just sucks data on both sides and pass it along.

Having higher-level protocols is mandatory in some cases, when Vaurien needs to
read a specific amount of data in the sockets, or when you need to be aware
of the kind of response you’re waiting for, and so on.

Vaurien also has behaviors. A behavior is a class that’s going to be
invoked everytime Vaurien proxies a request. That’s how you can impact the
behavior of the proxy. For instance, adding a delay or degrading the response
can be implemented in a behavior.

Both protocols and behaviors are plugins, allowing you to extend Vaurien
by adding new ones.

Last (but not least), Vaurien provides a couple of APIs you can use to
change the behavior of the proxy live. That’s handy when you are doing
functional tests against your server: you can for instance start to add
big delays and see how your web application reacts.

Using Vaurien from the command-line

Vaurien is a command-line tool.

Let’s say you want to add a delay for 20% of the HTTP requests made on
google.com:

$ vaurien --protocol http --proxy localhost:8000 --backend google.com:80 \
 --behavior 20:delay

With this set up, Vaurien will stream all the traffic to google.com by using
the http protocol, and will add delays 20% of the time.

You can find a description of all built-in protocols here: protocols.

You can pass options to the behavior using –behavior-NAME-OPTION options:

$ vaurien --protocol http --proxy localhost:8000 --backend google.com:80 \
 --behavior 20:delay \
 --behavior-delay-sleep 2

Passing all options through the command-line can be tedious, so you can
also create an ini file for this:

[vaurien]
backend = google.com:80
proxy = localhost:8000
protocol = http
behavior = 20:delay

[behavior:delay]
sleep = 2

You can find a description of all built-in behaviors here: behaviors.

You can also find some usage examples here: Examples.

Controlling Vaurien live

Vaurien provides an HTTP server with an API, which can be used to control
the proxy and change its behavior on the fly.

To activate it, use the –http option:

$ vaurien --http

By default the server runs on locahost:8080 but you can change it with
the –http-host and –http-port options.

See APIs for a full list of APIs.

Controlling Vaurien from your code

If you want to run and drive a Vaurien proxy from your code, the project
provides a few helpers for this.

For example, if you want to write a test that uses a Vaurien proxy,
you can write:

import unittest
from vaurien import Client, start_proxy, stop_proxy

class MyTest(unittest.TestCase):

 def setUp(self):
 self.proxy_pid = start_proxy(port=8080)

 def tearDown(self):
 stop_proxy(self.proxy_pid)

 def test_one(self):
 client = Client()
 options = {'inject': True}

 with client.with_behavior('error', **options):
 # do something...
 pass

 # we're back to normal here

In this test, the proxy is started and stopped before and after the
test, and the Client class will let you drive its behavior.

Within the with block, the proxy will error out any call by using
the errors behavior, so you can verify that your application is
behaving as expected when it happens.

Extending Vaurien

Vaurien comes with a handful of useful behaviors and protocols,
but you can create your own ones and plug them in a configuration file.

In fact, that’s the best way to create realistic issues: imagine you
have a very specific type of error on your LDAP server everytime your
infrastructure is under heavy load. You can reproduce this issue in your
behavior and make sure your web application behaves as it should.

Creating new behaviors and protocols is done by implementing classes with
specific signatures.

For example if you want to create a “super” behavior, you just have
to write a class with two special methods: on_before_handle and
on_after_handle.

Once the class is ready, you can register it with Behavior.register:

from vaurien.behaviors import Behavior

class MySuperBehavior(object):

 name = 'super'
 options = {}

 def on_before_handle(self, protocol, source, dest, to_backend):
 # do something here
 return True

 def on_after_handle(self, protocol, source, dest, to_backend):
 # do something else
 return True

Behavior.register(MySuperBehavior)

You will find a full tutorial in Extending Vaurien.

Contribute

The code repository & bug tracker are located at
https://github.com/mozilla-services/vaurien

Don’t hesitate to send us pull requests or open issues!

More documentation

And there is more! Have a look at the other sections of the documentation:

	APIs
	The REST API

	Extending Vaurien
	Writing Protocols

	Writing Behaviors

	Using your protocols and behaviors

	Examples

APIs

You can control vaurien from its APIs. There is a REST API and a command-line
API

The REST API

GET /behavior

Returns the current behavior in use, as a json object.

Example:

$ curl -XGET http://localhost:8080/behavior
{
 "behavior": "dummy"
}

PUT /behavior

Set the behavior. The behavior must be provided in a JSON object,
in the body of the request, with a name key for the behavior
name, and any option to pass to the behavior class.

Note

Don’t forget to set the “application/json” Content-Type header
when doing your calls.

Example:

$ curl -XPUT -d '{"sleep": 2, "name": "delay"}' http://localhost:8080/behavior \
 -H "Content-Type: application/json"
 {
 "status": "ok"
 }

GET /behaviors

Returns a list of behaviors that are possible to use

Example:

$ curl -XGET http://localhost:8080/behaviors
{
"behaviors": [
 "blackout",
 "delay",
 "dummy",
 "error",
 "hang"
]
}

If you want to control vaurien from the command-line, you can do so by using
vaurienclient [http://github.com/mozilla-services/vaurienclient].
vaurienctl –help will provide you some help.

Extending Vaurien

You can extend Vaurien by writing new protocols or new behaviors.

Writing Protocols

Writing a new protocol is done by creating a class that inherits from
the vaurien.protocols.base.BaseProtocol class.

The class needs to provide three elements:

	a name class attribute, the protocol will ne known under that
name.

	an optional options class attribute - a mapping containing options
for the protocol. Each option value is composed of a
description, a type and a default value. The mapping is wired in the
command-line when you run vaurien - and is also used to generate
the protocol documentation.

	a _handle method, that will be called everytime some data
is ready to be read on the proxy socket or on the backend socket.

The vaurien.protocols.base.BaseProtocol class also provides
a few helpers to work with the sockets:

	_get_data: a method to read data in a socket. Catches
EWOULDBLOCK and EAGAIN errors and loops until they happen.

	option: a method to get the value of an option

Example:

class TCP(BaseProtocol):
 name = 'tcp'
 options = {'reuse_socket': ("If True, the socket is reused.",
 bool, False),
 'buffer': ("Buffer size", int, 8124),
 'keep_alive': ("Keep the connection alive", bool, False)}

 def _handle(self, source, dest, to_backend):
 # default TCP behavior
 data = self._get_data(source)
 if data:
 dest.sendall(data)
 if not self.option('keep_alive'):
 data = ''
 while True:
 data = self._get_data(dest)
 if data == '':
 break
 source.sendall(data)

 if not self.option('reuse_socket'):
 dest.close()
 dest._closed = True
 return False
 return data != ''

Once the protocol class is ready, it can be registered via the Protocol class:

from vaurien.protocols import Protocol
Protocol.register(TPC)

Writing Behaviors

Creating new behaviors is very similar to creating protocols.

XXX

Using your protocols and behaviors

XXX

Examples

Proxying on an HTTP backend and sending back 50x errors 20% of the time:

$ vaurien --protocol http --proxy 0.0.0.0:8888 --backend blog.ziade.org:80 \
 --behavior 20:error

An SSL SMTP proxy with a 5% error rate and 10% delays:

$ vaurien --proxy 0.0.0.0:6565 --backend mail.example.com:465 \
 --protocol smtp --behavior 5:error,10:delay

An SSL SMTP Proxy that starts to error out after 12 calls (so in the middle of
the transaction):

$ vaurien --proxy 0.0.0.0:6565 --backend mail.example.com:465 \
 --protocol smtp --behavior 100:error --behavior-error-warmup 12

Adding a 1 second delay on every call to a MySQL server:

$ vaurien --proxy 0.0.0.0:3307 --backend 0.0.0.0:3306 --stay-connected --behavior 100:delay \
 --behavior-delay-sleep 1

A quick’n’dirty SSH tunnel from your box to another box:

$ vaurien --stay-connected --proxy 0.0.0.0:8887 --backend 192.168.1.276:22 \
 --protocol-tcp-keep-alive

Index

Mozilla sphinx’s theme

This is a version of Mozilla’s sandstone theme, for the Sphinx documentation
engine. [http://sphinx.pocoo.org].

Here is how I use it

To use it, you need to clone it somewhere in your Sphinx’s architecture:

$ cd docs/source && mkdir _themes
$ git clone https://github.com/ametaireau/mozilla-sphinx-theme.git _themes/mozilla

and to configure Sphinx to use it. In your conf.py file:

html_theme_path = ['_themes']
html_theme = 'mozilla'

Take care and remove the pygments_style configuration, as it may not be of
the better taste with the mozilla’s theme.

Any contributions are of course welcome!

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		Vaurien, the Chaos TCP Proxy

 		APIs

 		The REST API

 		Extending Vaurien

 		Writing Protocols

 		Writing Behaviors

 		Using your protocols and behaviors

 		Examples

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_images/monkey.png

_static/comment-bright.png

