
Vaurien Documentation
Release 1.9

Mozilla

Jul 31, 2017

Contents

1 Installing Vaurien 3

2 Design 5

3 Using Vaurien from the command-line 7

4 Controlling Vaurien live 9

5 Controlling Vaurien from your code 11

6 Extending Vaurien 13

7 Contribute 15

8 More documentation 17
8.1 APIs . 17
8.2 Extending Vaurien . 18
8.3 Examples . 19

i

ii

Vaurien Documentation, Release 1.9

Ever heard of the Chaos Monkey?

It’s a project at Netflix to enhance the infrastructure tolerance. The Chaos Monkey will randomly shut down some
servers or block some network connections, and the system is supposed to survive to these events. It’s a way to verify
the high availability and tolerance of the system.

Besides a redundant infrastructure, if you think about reliability at the level of your web applications there are many
questions that often remain unanswered:

• What happens if the MYSQL server is restarted? Are your connectors able to survive this event and continue to
work properly afterwards?

• Is your web application still working in degraded mode when Membase is down?

• Are you sending back the right 503s when postgresql times out ?

Of course you can – and should – try out all these scenarios on stage while your application is getting a realistic load.

But testing these scenarios while you are building your code is also a good practice, and having automated functional
tests for this is preferable.

That’s where Vaurien is useful.

Vaurien is basically a Chaos Monkey for your TCP connections. Vaurien acts as a proxy between your application and
any backend.

You can use it in your functional tests or even on a real deployment through the command-line.

Contents 1

http://www.codinghorror.com/blog/2011/04/working-with-the-chaos-monkey.html

Vaurien Documentation, Release 1.9

2 Contents

CHAPTER 1

Installing Vaurien

You can install Vaurien directly from PyPI. The best way to do so is via pip:

$ pip install vaurien

3

Vaurien Documentation, Release 1.9

4 Chapter 1. Installing Vaurien

CHAPTER 2

Design

Vaurien is a TCP proxy that simply reads data sent to it and pass it to a backend, and vice-versa.

It has built-in protocols: TCP, HTTP, Redis & Memcache. The TCP protocol is the default one and just sucks data on
both sides and pass it along.

Having higher-level protocols is mandatory in some cases, when Vaurien needs to read a specific amount of data in
the sockets, or when you need to be aware of the kind of response you’re waiting for, and so on.

Vaurien also has behaviors. A behavior is a class that’s going to be invoked everytime Vaurien proxies a request.
That’s how you can impact the behavior of the proxy. For instance, adding a delay or degrading the response can be
implemented in a behavior.

Both protocols and behaviors are plugins, allowing you to extend Vaurien by adding new ones.

Last (but not least), Vaurien provides a couple of APIs you can use to change the behavior of the proxy live. That’s
handy when you are doing functional tests against your server: you can for instance start to add big delays and see
how your web application reacts.

5

Vaurien Documentation, Release 1.9

6 Chapter 2. Design

CHAPTER 3

Using Vaurien from the command-line

Vaurien is a command-line tool.

Let’s say you want to add a delay for 20% of the HTTP requests made on google.com:

$ vaurien --protocol http --proxy localhost:8000 --backend google.com:80 \
--behavior 20:delay

With this set up, Vaurien will stream all the traffic to google.com by using the http protocol, and will add delays 20%
of the time.

You can find a description of all built-in protocols here: protocols.

You can pass options to the behavior using –behavior-NAME-OPTION options:

$ vaurien --protocol http --proxy localhost:8000 --backend google.com:80 \
--behavior 20:delay \
--behavior-delay-sleep 2

Passing all options through the command-line can be tedious, so you can also create an ini file for this:

[vaurien]
backend = google.com:80
proxy = localhost:8000
protocol = http
behavior = 20:delay

[behavior:delay]
sleep = 2

You can find a description of all built-in behaviors here: behaviors.

You can also find some usage examples here: Examples.

7

Vaurien Documentation, Release 1.9

8 Chapter 3. Using Vaurien from the command-line

CHAPTER 4

Controlling Vaurien live

Vaurien provides an HTTP server with an API, which can be used to control the proxy and change its behavior on the
fly.

To activate it, use the –http option:

$ vaurien --http

By default the server runs on locahost:8080 but you can change it with the –http-host and –http-port options.

See APIs for a full list of APIs.

9

Vaurien Documentation, Release 1.9

10 Chapter 4. Controlling Vaurien live

CHAPTER 5

Controlling Vaurien from your code

If you want to run and drive a Vaurien proxy from your code, the project provides a few helpers for this.

For example, if you want to write a test that uses a Vaurien proxy, you can write:

import unittest
from vaurien import Client, start_proxy, stop_proxy

class MyTest(unittest.TestCase):

def setUp(self):
self.proxy_pid = start_proxy(port=8080)

def tearDown(self):
stop_proxy(self.proxy_pid)

def test_one(self):
client = Client()
options = {'inject': True}

with client.with_behavior('error', **options):
do something...
pass

we're back to normal here

In this test, the proxy is started and stopped before and after the test, and the Client class will let you drive its behavior.

Within the with block, the proxy will error out any call by using the errors behavior, so you can verify that your
application is behaving as expected when it happens.

11

Vaurien Documentation, Release 1.9

12 Chapter 5. Controlling Vaurien from your code

CHAPTER 6

Extending Vaurien

Vaurien comes with a handful of useful behaviors and protocols, but you can create your own ones and plug them in a
configuration file.

In fact, that’s the best way to create realistic issues: imagine you have a very specific type of error on your LDAP
server everytime your infrastructure is under heavy load. You can reproduce this issue in your behavior and make sure
your web application behaves as it should.

Creating new behaviors and protocols is done by implementing classes with specific signatures.

For example if you want to create a “super” behavior, you just have to write a class with two special methods:
on_before_handle and on_after_handle.

Once the class is ready, you can register it with Behavior.register:

from vaurien.behaviors import Behavior

class MySuperBehavior(object):

name = 'super'
options = {}

def on_before_handle(self, protocol, source, dest, to_backend):
do something here
return True

def on_after_handle(self, protocol, source, dest, to_backend):
do something else
return True

Behavior.register(MySuperBehavior)

You will find a full tutorial in Extending Vaurien.

13

Vaurien Documentation, Release 1.9

14 Chapter 6. Extending Vaurien

CHAPTER 7

Contribute

The code repository & bug tracker are located at https://github.com/mozilla-services/vaurien

Don’t hesitate to send us pull requests or open issues!

15

https://github.com/mozilla-services/vaurien

Vaurien Documentation, Release 1.9

16 Chapter 7. Contribute

CHAPTER 8

More documentation

And there is more! Have a look at the other sections of the documentation:

APIs

You can control vaurien from its APIs. There is a REST API and a command-line API

The REST API

GET /behavior

Returns the current behavior in use, as a json object.

Example:

$ curl -XGET http://localhost:8080/behavior
{
"behavior": "dummy"

}

PUT /behavior

Set the behavior. The behavior must be provided in a JSON object, in the body of the request, with a
name key for the behavior name, and any option to pass to the behavior class.

Note: Don’t forget to set the “application/json” Content-Type header when doing your calls.

Example:

$ curl -XPUT -d '{"sleep": 2, "name": "delay"}' http://localhost:8080/
→˓behavior \

-H "Content-Type: application/json"

17

Vaurien Documentation, Release 1.9

{
"status": "ok"

}

GET /behaviors

Returns a list of behaviors that are possible to use

Example:

$ curl -XGET http://localhost:8080/behaviors
{
"behaviors": [

"blackout",
"delay",
"dummy",
"error",
"hang"

]
}

If you want to control vaurien from the command-line, you can do so by using vaurienclient. vaurienctl –help will
provide you some help.

Extending Vaurien

You can extend Vaurien by writing new protocols or new behaviors.

Writing Protocols

Writing a new protocol is done by creating a class that inherits from the vaurien.protocols.base.
BaseProtocol class.

The class needs to provide three elements:

• a name class attribute, the protocol will ne known under that name.

• an optional options class attribute - a mapping containing options for the protocol. Each option value is com-
posed of a description, a type and a default value. The mapping is wired in the command-line when you run
vaurien - and is also used to generate the protocol documentation.

• a _handle method, that will be called everytime some data is ready to be read on the proxy socket or on the
backend socket.

The vaurien.protocols.base.BaseProtocol class also provides a few helpers to work with the sockets:

• _get_data: a method to read data in a socket. Catches EWOULDBLOCK and EAGAIN errors and loops until
they happen.

• option: a method to get the value of an option

Example:

class TCP(BaseProtocol):
name = 'tcp'
options = {'reuse_socket': ("If True, the socket is reused.",

bool, False),

18 Chapter 8. More documentation

http://github.com/mozilla-services/vaurienclient

Vaurien Documentation, Release 1.9

'buffer': ("Buffer size", int, 8124),
'keep_alive': ("Keep the connection alive", bool, False)}

def _handle(self, source, dest, to_backend):
default TCP behavior
data = self._get_data(source)
if data:

dest.sendall(data)
if not self.option('keep_alive'):

data = ''
while True:

data = self._get_data(dest)
if data == '':

break
source.sendall(data)

if not self.option('reuse_socket'):
dest.close()
dest._closed = True

return False
return data != ''

Once the protocol class is ready, it can be registered via the Protocol class:

from vaurien.protocols import Protocol
Protocol.register(TPC)

Writing Behaviors

Creating new behaviors is very similar to creating protocols.

XXX

Using your protocols and behaviors

XXX

Examples

Proxying on an HTTP backend and sending back 50x errors 20% of the time:

$ vaurien --protocol http --proxy 0.0.0.0:8888 --backend blog.ziade.org:80 \
--behavior 20:error

An SSL SMTP proxy with a 5% error rate and 10% delays:

$ vaurien --proxy 0.0.0.0:6565 --backend mail.example.com:465 \
--protocol smtp --behavior 5:error,10:delay

An SSL SMTP Proxy that starts to error out after 12 calls (so in the middle of the transaction):

$ vaurien --proxy 0.0.0.0:6565 --backend mail.example.com:465 \
--protocol smtp --behavior 100:error --behavior-error-warmup 12

8.3. Examples 19

Vaurien Documentation, Release 1.9

Adding a 1 second delay on every call to a MySQL server:

$ vaurien --proxy 0.0.0.0:3307 --backend 0.0.0.0:3306 --stay-connected --behavior
→˓100:delay \

--behavior-delay-sleep 1

A quick’n’dirty SSH tunnel from your box to another box:

$ vaurien --stay-connected --proxy 0.0.0.0:8887 --backend 192.168.1.276:22 \
--protocol-tcp-keep-alive

20 Chapter 8. More documentation

	Installing Vaurien
	Design
	Using Vaurien from the command-line
	Controlling Vaurien live
	Controlling Vaurien from your code
	Extending Vaurien
	Contribute
	More documentation
	APIs
	Extending Vaurien
	Examples

